USN

Third Semester B.E. Degree Examination, December 2012

Logic Design

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

Define canonical Minterm form and canonical Maxterm form. 1

(05 Marks)

- Design a three-input, one output minimal two-level gate combinational circuit which has an output equal to 1 when majority of its inputs are at logic 1 and has an output equal to 0 when majority of its inputs are at logic 0. (05 Marks)
- c. Minimize the following multiple output functions using K-MAP:

$$f_1 = \sum m(0, 2, 6, 10, 11, 12, 13) + d(3, 4, 5, 14, 15)$$

$$f_2 = \sum m(1, 2, 6, 7, 8, 13, 14, 15) + d(3, 5, 12)$$
(10 Marks)

- Use a K-Map to simplify that following functions:
 - i) $f(A, B, C, D) = (A + B + \overline{C}) (\overline{B} + \overline{D}) (\overline{A} + C) (B + C)$
 - ii) $f(A, B, C, D) = \pi (1, 2, 4, 5, 7, 8, 10, 11, 13, 14)$

(10 Marks)

b. Find all the prime implicants of the function

$$f(a, b, c, d) = \sum (7, 9, 12, 13, 14, 15) + \sum d(4, 11)$$

Using Quine Mc Clusky algorithm.

(10 Marks)

- a. Reduce the given function using MEV technique:
 - i) $f = \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} C D + \overline{A} \overline{B} \overline{C} \overline{D} + A \overline{B} \overline{C} D + A \overline{B} \overline{C} E + A \overline{B} \overline{C} E + A \overline{B} \overline{C} C D + A \overline{B} \overline$

ii)
$$f = m_0 + m_1 F + m_2 + m_4 F + m_6 (E + \overline{E}) + m_7 F + m_{10} E$$

$$+ m_{12} + m_{15}F + d(m_5F + m_9\overline{F} + m_{11}\overline{E} + m_8E)$$

(10 Marks)

- b. Write the condensed truth table for a 4 to 2 line priority encoder with a valid output where the highest priority is given to the highest bit position or input with highest index and obtain (06 Marks) the minimal sum expressions for the outputs.
- Describe general working principle of decoder.

(04 Marks)

- Explain the working principle of four-bit parallel fast look ahead carry adder. (10 Marks) 4
 - Design a comparator to check if two n-bit numbers are equal. Configure this using cascaded (10 Marks) stages of 1-bit comparators.

- $\frac{\textbf{PART}-\textbf{B}}{\textbf{With a neat diagram, explain the working of Master-Slave JK flip-flop along with}}$ 5 a. (10 Marks) waveforms.
 - Explain switch debouncer using SR latch with waveforms.

(10 Marks)

- Explain universal shift register with the help of logic diagram, mode control table. (10 Marks) 6
 - Design and implement a divide-by-10 asynchronous counter using T FFS. (10 Marks)

- 7 a. Design and implement a synchronous BCD counter using J-K FFS. (10 Marks)
 - b. A sequential circuit has one input and one output state diagram is as shown in Fig.Q7(b). Design the sequential circuit with J-K flip-flop.

(10 Marks)

- 8 a. Design a sequence detector for the following sequence 1, 0, 1, 1, 1 with overlap. Write the state diagram and logic diagram. (10 Marks)
 - b. A sequential circuit has two flip-flops A and B, two inputs x and y, and an output z. The flip-flop input functions and the circuit output functions are as follows:

$$J_A = x \overline{B} + \overline{y} \overline{B};$$
 $K_A = x \overline{y} \overline{B}$
 $J_B = x \overline{A};$ $K_B = x \overline{y} + A$

$$z = xyA + \overline{x} \overline{y} B$$

Obtain the logic diagram, state table and state equations, also state diagram. (10 Marks)

* * * * *